
Appears in Proceedings of AAAI-97

Fast Context Switching in Real-time Propositional Reasoning

P. Pandurang Nayak and Brian C. Williams
Recom Technologies, NASA Ames Research Center

Mail Stop, 269-2

Mo�ett Field, CA 94035.

fnayak,williamsg@ptolemy.arc.nasa.gov

Abstract

The trend to increasingly capable and a�ordable con-
trol processors has generated an explosion of embed-
ded real-time gadgets that serve almost every func-
tion imaginable. The daunting task of programming
these gadgets is greatly alleviated with real-time de-
ductive engines that perform all execution and mon-
itoring functions from a single core model. Fast re-
sponse times are achieved using an incremental propo-
sitional deductive database (an LTMS). Ideally the
cost of an LTMS's incremental update should be linear
in the number of labels that change between succes-
sive contexts. Unfortunately an LTMS can expend
a signi�cant percentage of its time working on la-
bels that remain constant between contexts. This is
caused by the LTMS's conservative approach: a con-
text switch �rst removes all consequences of deleted
clauses, whether or not those consequences hold in the
new context. This paper presents a more aggressive in-
cremental TMS, called the ITMS, that avoids process-
ing a signi�cant number of these consequences that
are unchanged. Our empirical evaluation for space-
craft control shows that the overhead of processing
unchanged consequences can be reduced by a factor
of seven.

Introduction

The unending trend towards cheap processing has gen-

erated an explosion of embedded real-time gadgets.

Developing robust real-time kernels for these gadgets

often require codes that provide a variety of system

level tasks such as commanding, monitoring, diagno-

sis, recovery, and safe shutdown. In (Williams & Nayak

1996) we introduced an embedded real-time execution

kernel, called Livingstone, that performs all these func-

tions automatically using a single model of the under-

lying hardware. To achieve the stringent demands of

realtime performance Livingstone reduces each func-

tion to a deductive search problem on a propositional

database. This search must be completed before the

1Copyright c 1997, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

system moves to the next state, with required re-

sponse times on the order of hundreds of milliseconds.

Hence the success of Livingstone's model-based execu-

tion paradigm hinges critically upon the e�ciency of

the propositional deductive database.

A major time saving can be achieved by adopting

an event driven approach, propagating the e�ects to

the database as sensor readings and states change. A

truth maintenance system (Doyle 1979), in particular

the LTMS (McAllester 1980), o�ers a natural start-

ing point. The LTMS incrementally maintains the de-

ductive closure of unit propagation on a propositional

clausal theory as clauses are added and deleted. While

our use of an LTMS in Livingtone has been exceedingly

favorable, the stringent performance requirements of

real time leaves room for improvement. In this pa-

per we present an extension to the LTMS that demon-

strates substantial performance improvement.

The best an update algorithm can achieve is for the

cost of an LTMS update to be linear in the number of

labels that change between successive contexts. Unfor-

tunately an LTMS can expend a signi�cant percentage

of its time working on labels that remain constant be-

tween contexts. For example, on a realworld spacecraft

control problem this overhead was 37% on average and

rose to about 670% in the worst case. The source of

this added cost is the LTMS's conservative approach to

guaranteeing well-founded (i.e., loop-free) support: a

context switch �rst removes all consequences of any

deleted clauses, whether or not those consequences

hold in the new context, prior to propagating with

added clauses.

This paper presents a more aggressive incremental

TMS, called the ITMS, that avoids processing a signif-

icant number of unchanged consequences. The ITMS

algorithm is based on two properties. First, it exploits

the properties of depth-�rst numbering to immediately

�nd alternate supports for propositions while guaran-

teeing well-foundedness. Second, the ITMS provides a

novel mechanism for propagating the consequences of



C1: :nci _ :a _ nco C4: :rf _ ia C7: :ok _ :uf
C2: :ia _ nco C5: :uf _ ia C8: :rf _ :uf
C3: :ok _ a C6: :ok _ :rf C9: :a _ :ia
where

ok: bus is operating normally

rf : bus is recoverably failed

uf : bus is unrecoverably failed

a: bus is active

ia: bus is inactive

nci: no command input to bus

nco: no command output from the bus

Figure 1: A small fragment of the theory describing

DS-1. C1{C2 specify conditions under which the bus

outputs no command. C3{C5 de�ne conditions under

which the bus is active or inactive. C6{C9 are mutual

exclusion clauses.

newly added clauses before other clauses are deleted,

increasing the number of consequences available to be

used as alternate support. The improvement is dra-

matic. On the spacecraft problem the average per-

formance of the ITMS is merely 5% o� ideal with a

worst case overhead of 100%. This is approximately a

factor of seven reduction of overhead over the LTMS.

The next section summarizes the traditional LTMS in

a nutshell, the following section presents the ITMS,

and the paper closes with empirical results and related

work.

Background

This section introduces some basic terminology as used

in this paper. An LTMS manipulates a set � of propo-

sitional clauses over a set of boolean propositions. (A

clause is a disjuction of literals, where each literal is ei-

ther a proposition or the negation of a proposition.) An

LTMS labeling assigns a label (true, false, or unknown)

to each proposition. When the LTMS assigns the la-

bel true (false) to a proposition p, it guarantees that �

logically entails p (:p).2 Given a labeling, a clause C

is a unit clause if the label of exactly one literal in C is

unknown and all other literals are false. C is a conict

if all literals in C are false.

The LTMS uses unit propagation (also called

boolean constraint propagation) to compute proposi-

tion labels. Given a labeling, the basic step in unit

propagation is to non-deterministically select a unit

clause and change the label of the unknown literal in

the clause to true. A terminal labeling is one which

2Previous descriptions of an LTMS introduce the notion
of premises or assumptions. For simplicity, we simply rep-
resent premises as additional clauses in �, with no loss of
functionality.

either has no unit clauses or has a conict. The LTMS

always computes a terminal labeling.

In computing a terminal labeling, the LTMS also

constructs a dependency structure that explains why a

proposition has a given label. The dependency struc-

ture is derived in the natural way from a proposition's

support, which is the clause used by unit propagation

to infer a truth value for that proposition. Incremen-

tal clause deletion uses the dependency structure to

undo all (and only the) propagations that depend on

the deleted clause. A proposition p has a well-founded

support if and only if the above dependency graph has

no cycles containing p.

Incremental Truth Maintenance

Context switching during combinatorial search usu-

ally involves simultaneous addition and deletion of

clauses because context switches correspond to chang-

ing assignments, e.g., model-based diagnosis algo-

rithms change context by changing the mode assigned

to a component. Implementing this context switch as a

delete clause followed by an add clause is sub-optimal

since the LTMS is unable to preserve propagations that

hold both before and after the context switch but that

do not hold in the intermediate context.

Example 1 Figure 1 shows part of the theory describ-

ing the bus controller of Deep Space One (DS-1), the

�rst of NASA's New Millennium spacecraft (Pell et al.

1997). All commands from the ight computer to the

spacecraft's actuators are routed through the bus. The

clauses in Figure 1 show part of a typical command.

The clauses state that the bus outputs no command to

a speci�c actuator if either the bus is active and the

ight computer is not sending any command or the bus

is inactive. Versions of these clauses are repeated for

each command type for each actuator.

Assuming that the bus is operating normally (clause

C10 : ok) and that we can infer that there is no input

command (nci), Figure 2 shows the generated LTMS

labels and supports. Suppose now that a problem-

solver wants to change the context and assume that the

bus is recoverably failed (rf). This is achieved by �rst

deleting clause C10 and then adding clause C11 : rf .

Deleting C10 undoes the propagation to nco and to

all propositions dependent on nco.
3 Subsequent addi-

tion of C11 resupports nco with clause C2 (via ia and

rf), relabels it true, and restores propagations to nco's

consequences. The point is that nco's label and prop-

agations to its consequences are preserved across the

context switch, but are not preserved in the intermedi-

ate context, leading to excessive repropagation. In the

3For simplicity, consequences of nco have been omitted
from this example and from Figures 1 and 2.



C8 : :rf _ :uf

C10 : ok

C7 : :ok _ :uf

rf(f : 2)

ok(t : 1)

uf(f : 2)

C4 : :rf _ ia

C6 : :ok _ :rf

C3 : :ok _ a

ia(f : 3)

a(t : 2)

nci(t : 4)

C2 : :ia _ nco

C9 : :a _ :ia

C1 : :nci _ :a _ nco

nco(t : 5)-
HHY

-
HHj

-

�

��	

�

��*
HHj

-

--� � �
@@R

Figure 2: LTMS labels and proposition supports. Arrows have been drawn from clauses to propositions they

support, and from propositions to clauses in which the literal occurrence is false. Parenthesized expressions specify

the proposition labels and propagation numbers (introduced in the subsection on resupporting a proposition).

complete version of this example the supports of over

300 propositions are lost in the intermediate context,

only to be restored in the �nal context.

The critical drawback of the LTMS algorithm is

that it is overly conservative, leading it to undo nco's

label without �rst looking for ways to resupport it.

Resupporting propositions during a clause deletion is

complicated by the fact that the resupported propo-

sition must be provided with a well-founded support.

Resupporting nco is further complicated by the fact

that it has no resupport without the addition of C11.

This suggests that C11 should be added before C10 is

deleted, with propagations from C11 being used to re-

support nco. Unfortunately, propagation faces a bar-

rier: C11 and C10 are mutually inconsistent, so that

C11 is a conict in the labeling shown in Figure 2.

The conict is a barrier to propagation, and breaking

through this barrier requires an algorithm for propa-

gating through a conict . In the rest of this section

we develop the ITMS algorithm which provides a fast

context switching algorithm based on the above ideas.

Context switch algorithm

We start by describing the ITMS algorithm for con-

text switching. Two key subroutines for resupporting

propositions and propagating through conicts are de-

scribed in the subsequent two subsections.

Let A be the added clause and D be the deleted

clause. If D supports no proposition in the current la-

beling, then deleting it leaves the labeling unchanged.

Hence, the ITMS algorithm is identical to the LTMS

algorithm. Now suppose thatD supports a proposition

d. Following the above discussion, the ITMS algorithm

starts by adding A to � and initiates propagation. If

the resulting terminal labeling contains no conicts,

then the ITMS algorithm merely deletes D from � us-

ing the standard deletion algorithm and propagates to

a terminal labeling. However, when the LTMS is used

in combinatorial search, propagation with both A and

D in � leads to conicts, since context switches usually

correspond to assignment changes and assignments are

required to be unique (e.g., a component can have ex-

actly one mode).

When unit propagation leads to a conict, the ITMS

tries to propagate through the conict using the algo-

rithm described in the next subsection. Propagating

through a conict C changes the label of a proposition

p occurring in C such that (a) p satis�es C; and (b) C

provides a well-founded support for p. Since C became

a conict as a result of adding A and propagating, p's

new label depends on A. The change in p's label has

three important side-e�ects. First, p's new label may

allow us to use the algorithm in the next subsection

to resupport a di�erent proposition q, making q de-

pendent on p and hence on A. Second, propagations

based on p's old label are undone (unless resupport is

possible). Third, p's old support, and possibly other

clauses, become conicts. The ITMS then recursively

picks another conict and tries to propagate through

it, until no more propagations are possible. At this

point the ITMS deletes D, and propagates to a termi-

nal labeling.

Example 2 Adding C11 to � results in a conict

as shown on the left side of Figure 3. Propagating

through C11 is achieved by changing rf 's label to true.

As a result of this change, uf can be resupported us-

ing C8, and C4 and C6 become conicts, as shown on

the right side of Figure 3. The ITMS then propagates

through C4, changing the label of ia to true. As a

result of this change, nco is resupported by C2, as de-

sired. nco's resupport and the propagation through C4

are discussed in detail in Examples 3 and 4.

The ITMS enforces the following conditions on the

conict C picked for propagation and the proposition

p whose label is changed by the propagation:

1. d does not occur in C. If d occurs in C, p will lose its

support (C) when D is deleted from �. This is un-

desirable since we want p's label and support to be

preserved in the new context. Ideally, p's new label



C11 : rf

C8 : :rf _ :uf

C7 : :ok _ :uf

rf(f : 2)

uf(f : 2)

C4 : :rf _ ia

C6 : :ok _ :rf

���
����

-

)

C11 : rf

C8 : :rf _ :uf

C7 : :ok _ :uf

rf(t : 1)

uf(f : 2)

C4 : :rf _ ia

C6 : :ok _ :rf

��*
HHj

��
�*
@@I

���

Figure 3: Adding C11 to the ITMS results in a conict as shown on the left. Propagating through C11 yields the

labeling on the right.

should be independent of d. However, guarantee-

ing this is expensive since it may involve a complete

traversal of the dependency graph. Hence, we use

the approximation that d does not occur in C.

2. p's label has not been changed while propagating

through another conict, thus preventing cycles.

Resupporting a proposition

Consider a proposition p supported by a clause C in

�. A clause R can resupport p if and only if all the

following conditions hold:

1. If p occurs positively (negatively) in C then it oc-

curs positively (negatively) in R. This ensures that

resupporting with R preserves p's label.

2. All other literals in R are false. This ensures that R

can propagate a label to p.

3. None of the other literals in R depend on p. This

ensures that resupporting p with R provides p with

a well-founded support.

The �rst and second conditions are easy to check.

However, condition 3 is potentially time consuming.

The straightforward implementation that traces back

over proposition supports takes time comparable to the

time for a complete repropagation, defeating the very

purpose of incremental context switching.

We address this di�culty by using a fast approxima-

tion that is su�cient for condition 3 to hold. The key

idea is to associate a propagation number with each

supported proposition that satis�es the following in-

variant:

� If a proposition is supported by a clause S, then it's

propagation number is greater than the propagation

number of all other propositions occurring in S.

A proposition's propagation number is set whenever

unit propagation provides it with with a support. In

this case we set the propagation number to be 1 more

than the largest of the propagation numbers of the

other propositions occurring in the support. If there

are no other propositions occurring in the support, the

propagation number is set to 1.

The above invariant ensures that a proposition's

propagation number is less than the propagation num-

bers of all its consequence. Hence, it follows that if

p's propagation number is greater than or equal to q's

propagation number, then q cannot depend on p., i.e.,

condition 3 holds if the old propagation number of p is

greater than or equal to the propagation number of all

other propositions occurring in R. Hence, we replace

condition 3 with:

30. The prior propagation number of p (when it was sup-

ported by C) is greater than the propagation num-

bers of all the other literals in R.

Condition 30 is easy to check, so that it is easy to

check if a clause R can resupport a proposition p. Two

points are worth highlighting. First, condition 30 is

su�cient but not necessary for condition 3: if p's prop-

agation number is less than q's propagation number it

does not mean that q depends on p. Hence, this algo-

rithm may miss resupport opportunities.

Second, condition 30 requires that the prior propaga-

tion number of p is not equal to the largest propagation

number of other propositions in R, even though condi-

tion 3 is satis�ed when equality holds. Equality is ex-

cluded because we need to set the propagation number

of p following its resupport with R. The new propa-

gation number of p can be any value greater than the

propagation numbers of other propositions in R, but

less than or equal to the old propagation number of p.

The latter is required to ensure that the propagation

number of p continues to be less than the propagation

number of all propositions dependent on p. If equality

were allowed, we would be forced to increase p's prop-

agation number, potentially violating this restriction.

Example 3 Figure 4 shows the situation before and

after nco is resupported. In the situation on the left,

nco is supported by clause C1. Clause C2 can resup-

port nco since (a) nco occurs positively in both C1 and



ia(t : 3)

a(t : 2)

nci(t : 4)

C2 : :ia _ nco

C1 : :nci _ :a _ nco

nco(t : 5)

-

���

-

@@R
)

ia(t : 3)

a(t : 2)

nci(t : 4)

C2 : :ia _ nco

C1 : :nci _ :a _ nco

nco(t : 5)

-

���

- ���

Figure 4: Proposition nco can be resupported by clause C2. The left and right hand sides of the �gure show the

situation before and after resupport, respectively.

C2; (b) the other literal in C2 (:ia) is false; and (c)

the propagation number of nco on the left is greater

than the propagation number of ia. Hence, nco can be

resupported by clause C2 as shown on the right.

Propagating through a conict

We now develop the algorithm to propagate through

a conict C to a proposition p. Since we want C to

provide a well-founded support for p, none of the other

propositions occurring in C should depend on p. Fol-

lowing the discussion in the previous subsection, we

require that:

� In the current labeling, the propagation number of p

is greater than or equal to the propagation number

of all other propositions occurring in C.

This is su�cient to ensure that none of the other

propositions in C depend on p. As before, this is not a

necessary condition, but rather a fast approximation.

Note that, unlike condition 30 in the previous subsec-

tion, the above condition includes the case where p's

propagation number is equal to the propagation num-

ber of some other propositions in C. The reason for

this will become clear shortly.

Let us now say that p satis�es the above condition,

and we wish to propagate to p through C. We change

the current labeling using the following three steps:

1. Change the label of p from true to false or vice versa,

and let C be p's support. The new propagation num-

ber of p can be any value greater than the propaga-

tion number of all other propositions occurring in

C.

2. Resupport any propositions that can be made de-

pendent on p with its new label, using the algorithm

in the previous subsection with the added condition

that p must occur in the clause used for resupport.

3. Undo any propagations based on p having its pre-

vious label. Since we undo all propagations based

on p's previous label, p's new propagation number is

not required to be less than or equal to its previous

propagation number. Hence, in selecting p from the

conict C, we can include the propositions whose

propagation numbers are greater than or equal to

the propagation numbers of other propositions in C.

Example 4 Figure 5 shows the situation before and

after propagating through the conict C4. On the left,

clause C4 is a conict, and ia is the proposition oc-

curring in C4 with the largest propagation number.

Hence, we propagate through conict C4 to ia. On the

right, C4 supports ia and ia's label has been changed to

true. This change makes clause C9 a conict. When ia

becomes true, proposition nco is resupported as shown

in Figure 4.

Discussion

The central invariant associated with propagation

numbers, namely that a proposition's propagation

number is greater than the propagation number of

propositions it depends on, guarantees that the above

algorithms for resupporting propositions and propa-

gating through conicts yield well-founded supports.

When taken together with the fact that the ITMS al-

ways concludes a context switch by propagating to a

terminal labeling, this means that the ITMS imple-

mentation of a context switch is sound and complete

with respect to unit propagation.

Experimental results

We now present an empirical evaluation of our imple-

mentation of the ITMS algorithm. This evaluation

compares the ITMS algorithm against the LTMS algo-

rithm that �rst deletes and then adds the clauses. The

comparison is done in two ways. First, we compare the

number of operations required by each algorithm. For

the LTMS algorithm, the number of operations is the

number of times a proposition's label is changed (from

either true or false to unknown or vice versa). For the

ITMS algorithm we also include the number of times

a proposition's label is changed from true to false or

vice versa (which is also the number of conicts that

are propagated). Second, we compare the number of

propositions whose labels are changed by the two algo-

rithms against the number of propositions whose labels



rf(t : 1)

ia(f : 3)

a(t : 2)

C4 : :rf _ ia

C9 : :a _ :ia-
����

HHHj-

)

rf(t : 1)

ia(t : 3)

a(t : 2)

C4 : :rf _ ia

C9 : :a _ :ia-

��
�*

HH
HY
-

Figure 5: Satisfying a conict. Clause C4 is a conict on the left, and is satis�ed by proposition ia on the right.

must change across the context switch. This provides

us with a measure of the extra work done by the two

algorithms.

The evaluation was done on the propositional theory

used in on-board real-time model-based diagnosis and

recovery for the DS-1 spacecraft (Williams & Nayak

1996; Pell et al. 1997). The theory is based on mod-

eling DS-1 using 145 components and an average of

almost 4 modes per component, resulting in a total

of 3; 905 propositions and 12; 693 clauses. A context

switch in this application corresponds to changing the

mode of a component.

We evaluated the algorithms on 387 distinct context

switches. For each context switch we calculated the

ratio of the number of operations performed by the

ITMS to the number performed by the LTMS. Table 1

summarizes the results. It shows the number of context

switches that yielded ratios within various intervals.

Three points are worth noting. First, the 8 cases

that give improvements of over 80% provide the most

compelling argument for using the new algorithm in a

real-time system, and was the central motivation for

developing the ITMS. The LTMS provides unaccept-

ably slow response times in those 8 cases, compromis-

ing the need for timely fault diagnosis and recovery.

Second, the ITMS also provides improved performance

in all but 4 cases, with an average improvement of

about 30%. Third, the ITMS performs worse than

the LTMS by about 5% in 4 cases. The reason for

this is related to condition 1 in the subsection describ-

ing the context switch algorithm, which introduced

an approximation for the condition that propagating

through a conict should not depend on the clause to

be deleted. When this approximation is violated, the

e�ort in propagating through the conict is wasted,

which explains the performance in the 4 cases.

Table 2 summarizes the comparison between the

number of propositions whose labels are changed by

the two algorithms against the number of propositions

whose labels must change across the context switch.

Three points are worth noting. First, in a majority

of cases (264 out of 387) the ITMS does not modify

the label of any extra propositions. Second, the ITMS

performs signi�cantly better than the traditional algo-

rithm on the average and in the worst case. On aver-

age, the ITMS modi�es only about 5% more proposi-

tions than is required, while the LTMS modi�es about

37% more propositions. This means that, on average,

the ITMS overhead is about seven times smaller than

than the LTMS overhead. The 18 worst cases of the

LTMS range from about 2:2 to 7:7 times the required

number of label changes. Third, the ITMS still per-

forms poorly in a small number of cases (10), where it

modi�es about twice the number of required proposi-

tions. The reason for this is that our resupport algo-

rithm relies on a su�cient, but not necessary, condition

to identify resupport opportunities, leading it to miss

some opportunities.

Related work

The main drawback of LTMS algorithms, viz., the need

to redo propagations that hold across a context switch,

has been identi�ed in the past as the so-called unout-

ing problem. The main approach to addressing this

problem has been to propose a fundamentally di�er-

ent type of truth maintenance system|the ATMS (de

Kleer 1986). The advantage of the ATMS is its abil-

ity to switch contexts without any label propagation.

However, this comes at the cost of an exponential time

and space labeling process, making it inapplicable for

embedded, real-time systems. This is not surprising

since the original ATMS was designed speci�cally for

problems that require �nding all solutions, e.g., envi-

sionment. Real-time systems do not have this luxury,

instead having to pick a small number of most preferred

solutions, e.g., most likely or least cost solutions.

More recently, various ATMS focusing algorithms

have been developed to alleviate the exponential cost

of labeling by restricting ATMS label propagation to

just the current context (Forbus & de Kleer 1988;

Dressler & Farquhar 1990). A context switch in such

systems can require label propagation, weakening the

main advantage of the ATMS and making LTMSs more

attractive. Unfortunately, no one has made precise em-

pirical comparisons between problem solvers based on

focused ATMSs and those based on LTMSs. However,

recent experience with an LTMS-based diagnosis en-

gine on a standard diagnostic suite have been exceed-



Ratio intervals 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Number 2 6 0 0 0 8 211 96 28 32 4

Table 1: Table summarizing the ratio of the number of operations performed by the ITMS to the number of

operations performed by the LTMS. The �rst row speci�es the upper bound of intervals of width 0:1, e.g., the entry

0:7 speci�es the interval from 0:6 to 0:7. The second row speci�es the number of ratios that fall in the corresponding

interval, e.g., 211 context switches yielded improvements of 30{40%.

Ratio intervals = 1:0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 > 2:1

ITMS 264 94 15 4 0 0 0 0 0 0 8 2 0

LTMS 0 23 89 155 78 20 4 0 0 0 0 0 18

Table 2: Table summarizing the ratios of the number of propositions whose labels are modi�ed by each algorithm

to the number of propositions whose labels must change across the context switch. The numbers in the �rst row

specify the upper bounds of intervals of length 0:1, except for the �rst and last numbers which represent ratios

exactly equal to 1.0 and greater than 2.1, respectively. The second and third rows specify the number of ratios that

fall into each interval for the ITMS and the LTMS, respectively.

ingly favorable, and appear to be comparable to the

very best focused ATMS-based engines (Williams &

Nayak 1996).

Recent work by de Kleer has focused on making unit

propagation complete using prime implicates (de Kleer

1990). This is related to our use of an LTMS as a

propositional reasoning engine, but is orthogonal to

the topic of this paper. Everett and Forbus (Everett &

Forbus 1996) develop a technique to scale up an LTMS

via fact garbage collection. The technique makes sense

in their application since they use the LTMS as a cache,

though it does not make sense in ours since we use the

LTMS as a real-time propositional reasoning engine.

Conclusions

This paper describes the ITMS, an agressive incremen-

tal TMS that optimizes context switching. The ITMS

uses a resupport algorithm based on propagation num-

bers and a novel algorithm for propagating through

conicts. As a result the ITMS can propagate the con-

sequences of newly added clauses before other clauses

are deleted, making these consequences available to be

used for alternate supports. This results in a dramatic

reduction in overhead compared to a traditional LTMS,

specially in worst-case performance, making the ITMS

a critical component of Livingstone's embedded real-

time execution kernel.

The main areas of improvement in our context

switching algorithm are related to developing more

complete, and yet e�cient, algorithms for detecting

resupport opportunities, and �nding e�cient ways to

ensure that propagations through a conict do not de-

pend on the clause to be deleted. These improvements

will help bring the context switch algorithm closer to

the ideal.

Acknowledgements

We would like to thank Jim Kurien, Bill Millar, Howie

Shrobe, and the anonymous reviewers for helpful dis-

cussions and their comments on the paper.

References

de Kleer, J. 1986. An assumption-based TMS. Arti-

�cial Intelligence 28(1):127{162.

de Kleer, J. 1990. Exploiting locality in a TMS. In

Procs. of AAAI-90, 264{271.

Doyle, J. 1979. A truth maintenance system. Arti�-

cial Intelligence 12:231{272.

Dressler, O., and Farquhar, A. 1990. Putting the

problem solver back in the driver's seat: Contextual

control of the ATMS. In LNAI 515. Springer-Verlag.

Everett, J. O., and Forbus, K. D. 1996. Scaling

up logic-based truth maintenance systems via fact

garbage collection. In Procs. of AAAI-96, 614{620.

Forbus, K. D., and de Kleer, J. 1988. Focusing the

ATMS. In Procs. of AAAI-88, 193{198.

McAllester, D. 1980. An outlook on truth mainte-

nance. Memo 551, MIT AI Laboratory.

Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.;

Muscettola, N.; Nayak, P. P.; Wagner, M. D.; and

Williams, B. C. 1997. An autonomous spacecraft

agent prototype. In Procs. of the First International

Conference on Autonomous Agents. ACM Press.

Williams, B. C., and Nayak, P. P. 1996. A model-

based approach to reactive self-con�guring systems.

In Procs. of AAAI-96, 971{978.


